4x^2-20/x^2-25

Simple and best practice solution for 4x^2-20/x^2-25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x^2-20/x^2-25 equation:


D( x )

x^2 = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

4*x^2-(20/(x^2))-25 = 0

4*x^2-20*x^-2-25 = 0

t_1 = x^2

4*t_1^1-20*t_1^-1-25 = 0

4*t_1^1-20*t_1^-1-25*t_1^0 = 0

(4*t_1^2-25*t_1^1-20*t_1^0)/(t_1^1) = 0 // * t_1^2

t_1^1*(4*t_1^2-25*t_1^1-20*t_1^0) = 0

t_1^1

4*t_1^2-25*t_1-20 = 0

4*t_1^2-25*t_1-20 = 0

DELTA = (-25)^2-(-20*4*4)

DELTA = 945

DELTA > 0

t_1 = (945^(1/2)+25)/(2*4) or t_1 = (25-945^(1/2))/(2*4)

t_1 = (3*105^(1/2)+25)/8 or t_1 = (25-3*105^(1/2))/8

t_1 in { (25-3*105^(1/2))/8, (3*105^(1/2)+25)/8}

t_1 = (25-3*105^(1/2))/8

x^2-((25-3*105^(1/2))/8) = 0

1*x^2 = (25-3*105^(1/2))/8 // : 1

x^2 = (25-3*105^(1/2))/8

t_1 = (3*105^(1/2)+25)/8

x^2-((3*105^(1/2)+25)/8) = 0

1*x^2 = (3*105^(1/2)+25)/8 // : 1

x^2 = (3*105^(1/2)+25)/8

x^2 = (3*105^(1/2)+25)/8 // ^ 1/2

abs(x) = ((3*105^(1/2)+25)^(1/2))/(2*2^(1/2))

x = ((3*105^(1/2)+25)^(1/2))/(2*2^(1/2)) or x = -(((3*105^(1/2)+25)^(1/2))/(2*2^(1/2)))

x in { ((3*105^(1/2)+25)^(1/2))/(2*2^(1/2)), -(((3*105^(1/2)+25)^(1/2))/(2*2^(1/2))) }

See similar equations:

| 3(2c-3)-7=4c+4 | | 3/2y+6/y^2 | | (4x2-20x)/(x2-25) | | 4*(3x-8)+7-2*(x+1)=-12 | | (4x^2-20x)/(x^2-25) | | 26+2x=63 | | 42/6+1 | | 1(3w+4)+5(w+-2)+-3(6w+-8)=10 | | 1-15(a+5)=1/9(4-a) | | 3b+35=4(-2+2)+2b | | 22=4c-2 | | 2x+6=9y+6x-2 | | (7x+2)(x+0)= | | 5n+1/8=3n/5/4 | | -12=4x+2x | | (s+8)(s^2-s+4)=0 | | 6y+7=3y-2 | | 3y+2x=7 | | 11/2x+3/7=5/2x | | 4(2)+2y=8 | | 2p-5-4p=-3 | | y*6-13=95 | | 3*w+2=w-4 | | m-12=8+3m | | s^3+2s^2+2s+1=0 | | (x+8)+(19-15)=16 | | 55+55+55= | | (x+2)+(21-12)=12 | | (x+3)+(16-9)=20 | | 2x-3.4x=13+5x | | (x+4)+(11-6)=14 | | 10-7(x-1)=3 |

Equations solver categories